Introduction to Systems Biology

James Gomes KSBS, IITD

 \square

X

Inner Life of a Cell

20

J

 $\widehat{\mathbf{Q}}$

X

G

Cells Exhibit a High Degree of Complexity

What are the different types of cells?

 $\widehat{}$

ア

Is "Life" an emergent property?

What is Systems Biology?

Study of the interaction of the components of a biological systems and how these interactions give rise to the functions of the system

To discover and understand the unifying principles of the Biological World

0

X

Clown Fish

What does Systems Biology consist of?

 $\widehat{\mathbf{n}}$

N

H. KITANO, NATURE, VOL 420, 2002

Developments Leading to the Field of Systems Biology

2

N

 $\widehat{}$

X

Hans V Westerhoff & Bernhard O Palsson, Nature Biotechnology Vol 22 (10) 2004

Intersection of Mathematics, Engineering Science and Biology began in the 1980's

Universal growth model was proposed by M. Savageau in the 1970s

- The single cell model was proposed by Shuler and Domach in the 1980s
- Metabolic Flux Analysis was proposed in the 1990s by Greg Stephanopoulos
- Systems Biology models was developed in the 2000s; one of the founders was Hiroaki Kitano
- Now models for evolution of life itself is being tested; these have be written based on principles of "systems biology"

Metabolic Flux Analysis Caused a Shift in Paradigm of the Central Dogma

Will this work?

 Wild type cells are engineered to overexpress the enzyme E3 with the aim of increasing the yield of Y

Gregory Stephanopoulos, Hal Alper and Joel Moxley, Nature Biotechnology, Vol 22 No 10 Oct 2004

 $\widehat{}$

X

The Equation that Defines MFA

MFA begins with reaction network stoichiometries describing how substrates re converted to metabolic products and biomass constituents (macromolecular pools). Consider K metabolites participating in J reactions

$$\frac{dX_{met}}{dt} = r_{met} - \mu X_{met}$$
$$X_{met} \stackrel{\Delta}{=} \text{Vector of concentrations of intracellular metabolites}$$
$$r_{met} \stackrel{\Delta}{=} \text{rxn vector containing net rates of formation}$$

Assumption: pseudo-steady state

D

 $\widehat{\mathbf{n}}$

X

Reason: 1. High turnover of metabolite pools

2. Rapid adjustments of metabolite pools even after large perturbations

$$\mathbf{0} = \mathbf{r}_{\text{met}} - \mu \mathbf{X}_{\text{met}}$$

 \mathbf{A}_{met} describes the dilution effect of metabolites due to growth. Intracellular level of metabolites is usually very low, hence

$$\mu \mathbf{X}_{\text{met}} << \mathbf{r}_{\text{met}}$$
$$0 = \mathbf{r}_{\text{met}} = \mathbf{G}^T \mathbf{v}$$

One of the results of MFA is a Flux Map that shows the differences in reaction throughputs under different conditions being investigated

Metabolic flux analysis showing effect of cysteine on of methionine production by mutant *C. lilium*

Why was there a need for creating a new field of Systems Biology?

- MFA assumes that all the variables (concentrations of intracellular metabolites, proteins, etc.) are in PSEUDO-STEADY STATE
- MFA does not include the regulation of gene expression

0

X

Systems Biology - A shift from Pseudo-Steady State

Systems Analysis Integrates Physiological and Transcriptional Data

	Pattern models	Tool output	Generated model
	Bayesian networks	Conditional probabilities of genes within and among groups	$P_{1} \xrightarrow{P_{16}} P_{25} \xrightarrow{P_{2}} P_{3} \xrightarrow{P_{3}} P_{3}$ $P_{1} \xrightarrow{P_{16}} P_{15} \xrightarrow{P_{2}} P_{3}$
ľ	Markov models	Conditional probabilities of genes within groups	$\left[\begin{array}{c} P_{16} & P_{25} & P_{23} \\ P_{16} & P_{25} & P_{2} \\ P_{16} & P_{2} \\ P_{16} & P_{2} & P_{2} \\ P_{16$
	Position weight matrices	Probability of genes within the groups	P P P P P P P P P P
	Complex grammars	Identification of groups and interactions among them	system H
	Regular expressions	Identification of groups of genes	
	Statistical correlations	Identification of genes]•••

Gregory Stephanopoulos, Hal Alper and Joel Moxley, Nature Biotechnology, Vol 22 No 10 Oct 2004 Various pattern models and data analysis techniques can be used for linking data sets Statistical correlations can be used to link microarray data with phenotype Models of increased complexity require more data but are also able to provide deeper insight

Increasing complexity

Q

N

 $\widehat{\mathbf{n}}$

X

Simple Example of Constructing a Model in Systems Biology

Kyoto Encyclopedia of Genes and Genomes KEGG Atlas

N

Sensitivity Analysis and Parameter Estimation in Systems Biology

Understanding and Depiction of Networks for Designing Drug Targets

N

The DT network is generated by using the known associations between FDA-approved drugs and their target proteins. Circles and rectangles correspond to drugs and target proteins. Drug nodes (circles) are colored according to their Anatomical Therapeutic Chemical Classification, and the target proteins (rectangular boxes) are colored according to their cellular component obtained from the Gene Ontology database

What are the Challenges facing Systems Biology?

Data quality and standardization

- Depends heavily on public domain data
- Data sets are incomplete, not standardized, not properly annotated; very often uncertain

Network topology

Development of new theoretical methods to understand, analyze and visualize the vast data acquired or generated for a problem

Computation and organization

Search and analyze massive volumes of data

Miniaturized automated microfluidic devices

- Need to obtain faster, accurate and repeatable high throughput data
- Bridge theory and experiments through fundamental principles

Imaging

 $\widehat{\mathbf{n}}$

X

Dynamic spatial and temporal data for discovering new drug targets

$\widehat{\mathbf{n}}$ X

What are the Elements for Analyses?

System Structure Identification

- Gene regulatory network
- Metabolic reaction networks

System Control

Cellular level control

External modification to repair defective control mechanism (treatment of diseases)

System Design

Grow organs from the patients own cells

Using biological material for robotics and computation

System Behaviour Analysis

Sensitivity to perturbations

Speed and characteristic of response

Development of viable simulators

Properties if the simulator

- Functional for biological processes
- Accurate, efficient and fast
- Friendly and logical GUI

No single simulator can answer all the problems

- Simulators of events e.g. rhythmic behavior
- Simulators for gene expression, metabolism and signaling
 - e.g gene expression
- Stochastic process, noise and uncertainty
- phenotype simulation

2

X

20

Р

Y R E I F N Q L P

 $\widehat{}$

X

Systems biology of multiple sclerosis

TRENDS in Neurosciences

Top-down Bottom-up Systems Biology

 $\widehat{\mathbf{n}}$

X

- In the top-down approach, high-throughput data are applied for identification of structures, connectivity, and possible information on the quantitative interaction between different components
- In the bottom-up approach, the system is reconstructed based on biological knowledge, e.g. on molecular interactions

Systems Biology Simulator

2

N

õ

J

 $\widehat{\mathbf{Q}}$

X

C

SYNTHETIC BIOLOGY logically follows Systems Biology

- 1980: used by Barbara Hobom to describe bacteria that had been genetically engineered using recombinant DNA technology
- 2000: term 'synthetic biology' was again Eric Kool and other speakers at the annual ACS Meeting to describe the synthesis of unnatural organic molecules that function in living systems

X

Enigma of Synthetic Biology

Make discoveries and overturn paradigms

Success or failure as an engineering discipline depending on where <u>independent</u> approximations become useful in the continuum between the atomic and macroscopic worlds

Assemble existing biological parts into machines, and create artificial systems that reproduce the emergent properties of living systems

Interchangeability Leading Synthetic Genetic Systems

The Watson-Crick genetic code

- Is this the only solution for "life" across the universe?
- Optimality of the genetic code
- Synthesis of "nucleobases" that can support an artificial genetic coding system
 - A synthetic genetic alphabet with up to 12 independently replicatable nucleobase pairs can be supported by an extended set of Watson–Crick rules
 - Protein engineering converts natural polymerases into polymerases that accept components of an expanded genetic alphabet in a polymerase chain reaction

Challenges in Synthetic Biology

Proteins

Proteins do not possess the repeating charge present in nucleotides

Vision

 $\widehat{\mathbf{n}}$

X

- synthetic biologists would first alter the behaviour of proteins by replacing amino acid
- the behaviour of a protein is not a simple combination of independent contributions from the constituent amino acids

More seriously

even the simplest of molecular interaction are poorly understood.

the chemical theory cannot retrodict the freezing point of water, the solubility of simple salts in water, or the packing of crystals of simple organic molecules

The Developmental Stages of the Foetus in Reptiles is Similar

Q

2

N